Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma.

نویسندگان

  • Shaobo Ruan
  • Qin He
  • Huile Gao
چکیده

To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment

Triple-negative breast cancer (TNBC) is one of the most invasively malignant human cancers and its incidence increases year by year. Effective therapeutics against them needs to be developed urgently. In this study, a kind of angiopep-2 modified and intelligently particle size-reducible NPs, Angio-DOX-DGL-GNP, was designed for accomplishing both high accumulation and deep penetration within tum...

متن کامل

Multistage nanoparticle delivery system for deep penetration into tumor tissue.

Current Food and Drug Administration-approved cancer nanotherapeutics, which passively accumulate around leaky regions of the tumor vasculature because of an enhanced permeation and retention (EPR) effect, have provided only modest survival benefits. This suboptimal outcome is likely due to physiological barriers that hinder delivery of the nanotherapeutics throughout the tumor. Many of these n...

متن کامل

Diagnosis and Treatment of Small Bowel Cancers Using Radioactive Gold Nanoparticles and Wireless Fluorescence Capsule Endoscopy

Background: Therapeutic and diagnosis properties of radioactive gold nanoparticle (198-AuNPs) cause them to be suitable for detection and treatment of tumors.Objective: Electrical and optical properties of PEG-198AuNPs were examined in this paper. Polyethylene Glycol (PEG)-198 AuNPs can be used for treatment and diagnosis of small intestine tumors.Methods: Wireless fluorescence capsule endoscop...

متن کامل

Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy

An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular ma...

متن کامل

Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting

Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 21  شماره 

صفحات  -

تاریخ انتشار 2015